
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Optimizing Raytracing Intersection Using Bounding

Volume Hierarchy Tree

Fachriza Ahmad Setiyono - 13523162

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

rizacal.mamen@gmail.com, 13523162@std.stei.itb.ac.id

Abstract—Ray tracing is a fundamental technique in computer

graphics for rendering realistic images by simulating the behavior

of light rays. However, the computational cost of determining ray-

object intersections poses a significant challenge, particularly for

complex scenes with numerous objects. This paper explores the

optimization of ray tracing intersections through the

implementation of a Bounding Volume Hierarchy (BVH) tree.

BVH is a spatial data structure that accelerates ray traversal by

organizing objects into hierarchical bounding volumes. We discuss

the construction algorithms for BVH trees and examine traversal

strategies to minimize intersection tests. Furthermore,

performance benchmarks demonstrate the substantial

improvements achieved in rendering speed and memory usage

compared to brute-force intersection techniques. This work

highlights the BVH tree’s role in optimizing ray tracing, making it

a practical and scalable solution for rendering complex scenes in

real time.

Keywords—Raytracing, Acceleration structures, Bounding

Volume Hierarchy, Tree

I. INTRODUCTION

Ray tracing has emerged as a powerful technique in computer

graphics, enabling the rendering of highly realistic images by

simulating the physical behavior of light. It works by tracing the

paths of rays from the camera into a 3D scene and calculating

the interactions with objects to determine color, reflection,

refraction, and shadows. This process closely mirrors real-world

light behavior, making ray tracing the foundation for visual

effects in movies, architectural visualization, and modern

gaming engines.

Due to the nature of ray tracing, any rendering effects that use

ray tracing is noticeably slower. Computing millions of rays per

frame is not an easy task even for modern GPUs. For complex

scenes containing thousands or even millions of objects, the

number of ray-object intersection tests required can grow

exponentially, leading to performance bottlenecks. In naïve

implementations, every ray must be tested against all objects in

the scene, making real-time rendering impractical.

In recent years, hardware-accelerated ray tracing is getting

more attention to the public. Though this does not mean that we

can rely solely on the hardware power to do ray tracing, it is still

a requirement to implement other software level optimizations.

Most common type of ray tracing optimizations are spatial

partitioning schemed. One of which is the Bounding Volume

Hierarchy (BVH) tree.

Fig. 1. Example of raytracing used in the video game “Minecraft” to

render realistic graphics.

(Source: https://www.ign.com/articles/what-is-ray-tracing)

This paper focuses on optimizing ray tracing performance

using a Bounding Volume Hierarchy (BVH) tree, a widely used

spatial data structure. BVH organizes objects into a hierarchy of

bounding volumes, allowing rays to skip large sections of the

scene that are guaranteed not to intersect, thereby minimizing

computational overhead. By leveraging hierarchical pruning,

BVH significantly improves efficiency without sacrificing

visual accuracy.

The primary objective of this work is to investigate the

construction and traversal techniques of BVH trees, analyze

their impact on rendering performance, and compare their

efficiency against brute-force approaches.

We will focus on the BVH tree construction and the traversal

method of BVH structure. Through this investigation, we aim to

demonstrate that BVH offers a scalable and practical solution

for improving ray tracing efficiency, enabling its application in

real-time rendering systems.

II. THEORETICAL BASIS

A. Ray Tracing

Ray tracing is a computer graphics method to render or

visualize objects from the scene to the screen. As opposed to the

standard rasterization method, ray tracing works by sending rays

per pixel and trace it to the scene until it hit an object in the

scene.

mailto:rizacal.mamen@gmail.com
mailto:13523162@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Ray tracing is the basis of many other advanced techniques

such as ray casting, photon mapping, and path tracing. These

techniques are often used in the context of photorealistic or

physically based rendering. However, this does not mean that

ray-tracing-based techniques are only used for such matters. It

is certainly possible to use ray tracing for non-physical based

rendering effects.

Ray tracing can simulate a variety of optical effects, such as

reflection, refraction, soft shadows, scattering, depth of field,

motion blur, caustics, ambient occlusion and dispersion

phenomena (such as chromatic aberration). It can also be used

to trace the path of sound waves in a similar fashion to light

waves, making it a viable option for more immersive sound

design in video games by rendering realistic reverberation and

echoes. In fact, any physical wave or particle phenomenon with

approximately linear motion can be simulated with ray tracing.

Ray tracing-based rendering techniques that involve sampling

light over a domain generate image noise artifacts that can be

addressed by tracing a very large number of rays, using

denoising techniques, or spread the ray over time.

Formally, we can model the ray as:

 𝑃(𝑡) = 𝑂⃗ + 𝑡𝐷̂ (1)

Where:

𝑂⃗ : Ray origin point

𝐷̂: Ray normalized direction from 𝐴 to 𝐵

𝑡: Ray Euclidean distance

This equation is commonly referred to as the parametric ray

equation (or parametric line equation). We must solve for the

Euclidean distance t to “trace” or move the ray starting from the

viewport (the observer) to the object in the scene. The method

to solve this is to use ray-object intersection test for each object

in the scene. Note that a ray can intersect with more than one

object if the objects are stacked relative to the observer. To work

around that, we need to store the distance of each intersection

and keep the minimum distance. The intersection with the

minimum distance is the closest one to the observer, which

makes sense because objects with larger distance would be

blocked by the closest object from the observer.

B. Acceleration Structure

Acceleration structures as the name implies are spatial data

structures that speed up ray traversal, specifically, the part of ray

traversal where we need to find the object to intersect.

There are basically two distinct “class” of spatial partitioning

acceleration structure schemes. One is space subdivision

methods such as BSP (Binary Space Partitioning), k-

dimensional tree (kD-Tree), and octree. The other one is

considered as object subdivision methods, such as Bounding

Volume Hierarchy (BVH) tree.

Each method has its own advantages and disadvantages. In the

case of space subdivision methods, since the subspaces do not

overlap, it is usually possible to traverse the structure in front-

to-back, or back-to-front, order more easily. When a ray is

traversing such structure, as soon as it hits a surface, we can stop

the traversal. This usually leads to faster traversal schemes.

Several software renderers take advantage of the traversal

efficiency given by the space subdivision schemes. On the other

hand, space subdivision schemes may be more intricate to

implement and may lead to deeper trees. Also, they do not like

very much dynamic geometry [3]. If the geometry encoded into

a space subdivision acceleration structure change, we usually

must rebuild the acceleration structure from scratch.

Fig. 3. Illustration of BVH acceleration structure.

(Source: https://en.wikipedia.org/wiki/Bounding_volume_hierarchy)

Object subdivision methods have a different characteristic.

Since the object is subdivided with volumes, and these volumes

may overlap, the traversal is traditionally slower. We cannot, for

instance, stop traversing a BVH as soon as a ray finds an

intersection with a surface. Since the volumes overlap, we may

need to check for potential intersections with nearby primitives

before quitting the traversal. On the other hand, it may be easier

to implement a BVH because we do not have to split the object

parts with planes. Also, BVHs usually generate shallower

structures (which may eventually compensate for the slower

traversal). However, one of the most interesting aspects of the

BVHs is that they are dynamic geometry friendly. If geometry

changes (but not much, actually), we can simply locally adjust

the size and position of the corresponding bounding volume (by

refitting). These adjustments may cause the need to adjust the

parent volumes, a procedure that may culminate in a chain

Fig. 2. Illustration of how rays are sent to the scene.

(Source: https://en.wikipedia.org/wiki/Ray_tracing_(graphics))

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

reaction that may reach the root node of the BVH.

When choosing between the two different methods, such as

octree and BVH, pick the one that suits the most. Octree is

superior when the scene is dense and can be represented as a

uniform voxel1 grid. Because the space are divided into regular

grids, some traversal methods like DDA-tracing can be used to

improve ray tracing or marching performance. However, if the

grid is sparse, BVH might be faster, though another method like

SVO (Sparse Voxel Octree) exists. BVH on the other hand is

superior if the scene consists of various sizes of geometry.

Typically, it’s the small geometries that are hard to represent

with voxels.

C. Graph

A graph is a structure in discrete mathematics, particularly in

graph theory, which consists of set of objects that are related to

each other in a sense. These objects are called nodes or vertices

or points, whereas the line that represents the relation between

the nodes are called edges. Also, another part of graph that is not

commonly used are faces, which represents the areas that are

enclosed between the edges. Note that the area “outside” the

graph is also considered as a face. In mathematical notation, we

can say that graph G is defined as G = (V, E), where V are the

vertex set, and E is the edge set. Generally, the vertex count

should be above 0. This means that a collection of vertices

without edges is also considered as a graph (usually called as

null graph or empty graph).

There are various types of graphs in graph theory, but some of

the common ones are:

1) Simple Graph

A regular graph or a simple graph is a graph that does

not consist of ring nor doubly linked vertices.

2) Multi Graph

A multi graph is the opposite of simple graph. This

graph has a doubly linked vertex in it.

3) Directed Graph (Digraph)

A directed graph is a graph with direction set for its

edges. This means that a connection from vertices V1 to V2

does not mean the same vice versa. We can say that other

graphs that does not have orientation on their edges are

called undirected graphs.

4) Null Graph or Empty Graph

As stated before, a graph with only vertices and no

edges are called a null graph or an empty graph.

Graph can also contain a path and/or a circuit [1]. A path is a

sequence of edges which joins vertices. A directed graph

contains a special type of path called directed path (or dipath).

A circuit is type of path where the start and end of the path is the

same.

1 Volume pixel, a three-dimensional version of pixel.

Fig. 4. Example of various graph structures.

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/21-Graf-Bagian2-2024.pdf)

D. Tree

Tree is an undirected graph that is connected and does not have

a circuit [2]. Formally, let graph G = (V, E) be an undirected

simple graph with n vertices, then all these properties are

equivalent:

1. G is a tree,

2. Every pair of vertices in G is connected with only a single

path,

3. G contains m = n – 1 total number of edges,

4. G does not have a circuit,

5. G is a connected graph,

6. G does not have a circuit, and an additional edge will only

result in one circuit,

7. G is a connected graph, and all the edges are “bridges”.

In computer graphics (and informatics in general), a tree is

usually a rooted tree. A rooted tree is a tree with one of the

vertices considered as the root and its edges are given an

orientation or direction.

Fig. 5. Example of various tree structures.

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/23-Pohon-Bag1-2024.pdf)

A rooted tree has its own terminologies that are commonly

referred to, such as:

1) Children and parents

Given vertex V1, V2, and V3 with edges coming from V1

to V2 and V3, then V1 is the parent of V2 and V3, while V2

and V3 are the children of V1.

2) Siblings

Given children V2 and V3 from parent V1, then we can

say V2, and V3 are siblings. Children from different

parents are not siblings.

3) Subtree

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

A subtree is a tree within a tree. The largest subtree

would be the trees where the root is the direct child of the

original tree.

4) Degree

The degree of a vertex is the number of subgraphs of

that vertex. The degree of a tree is usually the degree of

the root.

5) Leaf

A leaf is a vertex of a tree with no children. The degree

of a leaf is zero because it does not contain a subtree.

6) Internal node

An internal node is a vertex of a tree with children

except for the root, hence the name internal node.

7) Level

The level or depth of a vertex is the length of the path

taken from the root to said vertex. This means that the root

has depth of zero.

Given tree T with the degree of the root n, we can say that T is

an n-ary tree. In computer graphics, binary (n = 2) tree is one the

most used tree. With each vertices containing only a maximum

of two children, we can say that a vertex in binary tree only has

left and right children. Because the order of the children matters,

a binary tree is considered an ordered tree.

Fig. 7. Example of binary tree.

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/24-Pohon-Bag2-2024.pdf)

E. Bounding Volume Hierarchy Tree

BVH is binary tree structure on a set of geometric objects.

These geometric objects are in the form of leaf nodes of the tree,

which are wrapped in bounding volumes. In computer graphics,

a bounding volume for a set of objects is a closed region that

completely encloses the union of the objects in the set. These

wrapped leaf nodes are also wrapped in another, larger,

bounding volumes. So, the resulting BVH tree is a single

bounding volume that contains another bounding volume

recursively.

The way BVH groups object in the scene is by splitting the

object by the BVH axis relative to the world. This grouping is

done recursively until ideally the smallest bounding box is only

covering a single object. To construct the BVH, there are three

primary methods:

1) Top-down method

In top-down method, the input object set is divided into

two or more subsets which then bound in the selected

bounding volume and continue dividing (and bounding)

recursively until each subset contains only one primitive

(leaf nodes are reached). Top-down approaches are by far

the most common, simple to use, and quick to build, but

they don't always provide the greatest trees.

2) Top-down method

Starting with the input set as the tree's leaves, bottom-

up methods group two or more of them to create a new

(internal) node. This process is repeated until all the input

is gathered under a single node, that is, the tree's root.

Although it is more challenging to execute, bottom-up

approaches are probably going to result in better trees

overall. According to several recent studies [3], sorting

items using a space-filling curve and applying

approximate clustering based on this sequential order can

significantly increase construction speed in low-

dimensional space, matching or surpassing top-down

approaches.

3) Insertion method

Insertion methods build the tree by inserting one object

at a time, starting from an empty tree. The insertion

location should be chosen that causes the tree to grow as

little as possible. Insertion methods are considered on-line

methods since they do not require all primitives to be

available before construction starts and thus allow updates

to be performed at runtime.

III. IMPLEMENTATION

For the sake of simplicity, we will use and analyse an already

made ray tracer with BVH built in it. This ray tracer is made by

boonemiller and is publicly available on their GitHub. This ray

tracer is made in C++ language.

A. The BVH Structure

The structure of the BVH tree’s vertex is implemented in the file

bvh.hpp

Fig. 6. How BVH groups objects.

(Source: https://github.com/boonemiller/Ray-Tracer)

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig. 8. BVH vertex structure.

(Source: https://github.com/boonemiller/Ray-Tracer)

Since BVH is a binary tree, each vertex hold references to the

left and right children. To hold the bounding volume data for the

inner vertices, it stores the minimum and maximum 3-dimension

position of the bounding volume.

B. The BVH Construction

The BVH construction is inside the file bvh.cpp within the

function constructTree. Let us break down the main

algorithm inside this recursive function.

1) Base Case

The base case of this function is when the object that is

enclosed by the bounding volume is less than 3. In another

word, when a node only has less than or equal to 3 objects,

it will activate the base case. The node will then become

a leaf node that stores direct reference to the objects.

Fig. 9. BVH construction base case.

(Source: https://github.com/boonemiller/Ray-Tracer)

2) Axis Splitting

We know that BVH works by grouping set of objects

into two subsets by splitting based on the axis. The code

splits objects into two groups based on their position

along the "longest axis" of the current node. Objects are

also sorted into left/right groups based on whether they're

below or above the midpoint. For each group/vertex, it

calculates:

• The bounding box (min/max coordinates in x, y, z),

• The centroid (average position) of objects in that

group,

• The new longest axis for that group's vertex.

3) Axis Selection

After creating new left and right children, we also want

to set their longest axis and centroid. This code determines

the longest axis by comparing the extent of the bounding

box in each dimension. This helps create more efficient

splits.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig. 10. BVH axis splitting.

(Source: https://github.com/boonemiller/Ray-Tracer)

4) Recursion

After processing the current vertex, the function

recursively builds subtrees for the left and right groups.

Fig. 11. Recursion in BVH construction.

(Source: https://github.com/boonemiller/Ray-Tracer)

C. The BVH Traversal

To traverse the BVH structure, each ray must start from the

root, and recursively find the subtree that collides with the

object inside the bounding volume. This means that in each

iteration, a ray-bounding-volume intersection test must be

done.

Because the traversal in done in a recursive manner, then a

base case must be set up. The base case for this traversal is

when the current node is a leaf node, which means that there

are no deeper or smaller bounding volumes. The ray will either

hit or miss the scene based on this intersection test.

This also shows how BVH traversal can speed up a regular

ray tracing. If the ray happens to intersect with a leaf node

early, then an early return is done. Compared to regular ray

tracing, this is surely a huge speed up than intersecting the

whole object in the scene. The only way a BVH can be slower

than regular ray traversal is if the BVH construction

performance overhead is worse than ray tracing the whole

scene.

Fig. 12. Function to traverse BVH structure.

(Source: https://github.com/boonemiller/Ray-Tracer)

IV. RESULT

Boonemiller states that BVH trees increases cache

performance of primary rays. This happens as a side effect of

casting rays in one area consecutively. For example, if a primary

ray is cast in one pixel, and then cast a primary ray in the pixel

next to it, it is likely that the two pixels will be accessing the

same parts of the BVH tree and as a result the objects needed for

the object intersection tests will likely already be in the cache.

The graph shows the speed ups achieved by adding a BVH

acceleration structure into the ray tracing code. This shows the

percentage speed up of using a BVH acceleration structure over

a naïve, no acceleration structure method of ray tracing, on a

variety of scenes.

Fig. 13. Performance graph of BVH.

(Source: https://github.com/boonemiller/Ray-Tracer)

V. CONCLUSION

We have covered BVH construction technique. which

balance the trade-off between preprocessing time and runtime

efficiency. We also examined traversal algorithms that exploit

BVH’s hierarchical nature for early termination, further

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

optimizing intersection tests. Experimental results demonstrated

substantial performance improvements in terms of rendering

speed, reduced intersection computations, and memory usage

when compared to the regular naive methods.

Despite its strengths, BVH construction remains

computationally expensive, particularly for dynamic or

deformable scenes requiring frequent updates. Future work can

address these limitations by incorporating parallel processing

techniques, GPU acceleration, and hybrid approaches that

combine BVH with other spatial partitioning methods.

Additionally, adapting BVH to dynamic environments through

incremental updates rather than full rebuilding offers an avenue

for further optimization.

In conclusion, BVH proves to be a scalable and practical

solution for accelerating ray tracing computations, making it

highly suitable for modern graphics applications requiring real-

time performance. This work not only highlights BVH’s

capabilities but also lays the groundwork for future innovations

in rendering technologies.

VI. APPENDIX

The source code for the BVH and ray tracer for this paper is

made by boonemiller, which is available at their GitHub here:

https://github.com/boonemiller/Ray-Tracer

VII. ACKNOWLEDGMENT

The author would like to express his gratitude to God

Almighty who has given his blessings, so that the author can

complete the paper entitled "Optimizing Raytracing Intersection

Using Bounding Volume Hierarchy Tree" which was completed

on time. The author would also like to thank Arrival Dwi

Sentosa, S.Kom., M.T. as the lecturer in charge of the IF2123

Discrete Mathematics Class 3 course for the guidance and

teaching that has been carried out in this class. The author would

also like to thank Dr. Ir. Rinaldi Munir, MT., as one of the

lecturers in Discrete Mathematics for providing references and

learning resources for Discrete Mathematics through his

website. Finally, the author would like to thank his parents,

family, and all parties who helped the author in completing this

paper.

REFERENCES

[1] Munir, Rinaldi. 2024. “Graf (bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf (accessed on 8 January 2025).

[2] Munir, Rinaldi. 2024. “Pohon (bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-

Pohon-Bag1-2024.pdf (accessed on 8 January 2025).

[3] Ingo Wald, Solomon Boulos, and Peter Shirley. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies. ACM

Trans. Graph. 26, 1 (January 2007), 6–es.

https://doi.org/10.1145/1189762.1206075 (accessed on 8 January 2025).

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Januari 2025

Fachriza Ahmad Setiyono 13523162

