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Abstract—Ray tracing is a fundamental technique in computer 

graphics for rendering realistic images by simulating the behavior 

of light rays. However, the computational cost of determining ray-

object intersections poses a significant challenge, particularly for 

complex scenes with numerous objects. This paper explores the 

optimization of ray tracing intersections through the 

implementation of a Bounding Volume Hierarchy (BVH) tree. 

BVH is a spatial data structure that accelerates ray traversal by 

organizing objects into hierarchical bounding volumes. We discuss 

the construction algorithms for BVH trees and examine traversal 

strategies to minimize intersection tests. Furthermore, 

performance benchmarks demonstrate the substantial 

improvements achieved in rendering speed and memory usage 

compared to brute-force intersection techniques. This work 

highlights the BVH tree’s role in optimizing ray tracing, making it 

a practical and scalable solution for rendering complex scenes in 

real time. 
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I.   INTRODUCTION 

Ray tracing has emerged as a powerful technique in computer 

graphics, enabling the rendering of highly realistic images by 

simulating the physical behavior of light. It works by tracing the 

paths of rays from the camera into a 3D scene and calculating 

the interactions with objects to determine color, reflection, 

refraction, and shadows. This process closely mirrors real-world 

light behavior, making ray tracing the foundation for visual 

effects in movies, architectural visualization, and modern 

gaming engines. 

Due to the nature of ray tracing, any rendering effects that use 

ray tracing is noticeably slower. Computing millions of rays per 

frame is not an easy task even for modern GPUs. For complex 

scenes containing thousands or even millions of objects, the 

number of ray-object intersection tests required can grow 

exponentially, leading to performance bottlenecks. In naïve 

implementations, every ray must be tested against all objects in 

the scene, making real-time rendering impractical.  

In recent years, hardware-accelerated ray tracing is getting 

more attention to the public. Though this does not mean that we 

can rely solely on the hardware power to do ray tracing, it is still 

a requirement to implement other software level optimizations. 

Most common type of ray tracing optimizations are spatial 

partitioning schemed. One of which is the Bounding Volume 

Hierarchy (BVH) tree. 

 

Fig. 1. Example of raytracing used in the video game “Minecraft” to 

render realistic graphics. 

(Source: https://www.ign.com/articles/what-is-ray-tracing) 

 

This paper focuses on optimizing ray tracing performance 

using a Bounding Volume Hierarchy (BVH) tree, a widely used 

spatial data structure. BVH organizes objects into a hierarchy of 

bounding volumes, allowing rays to skip large sections of the 

scene that are guaranteed not to intersect, thereby minimizing 

computational overhead. By leveraging hierarchical pruning, 

BVH significantly improves efficiency without sacrificing 

visual accuracy. 

The primary objective of this work is to investigate the 

construction and traversal techniques of BVH trees, analyze 

their impact on rendering performance, and compare their 

efficiency against brute-force approaches. 

We will focus on the BVH tree construction and the traversal 

method of BVH structure. Through this investigation, we aim to 

demonstrate that BVH offers a scalable and practical solution 

for improving ray tracing efficiency, enabling its application in 

real-time rendering systems. 

 

II. THEORETICAL BASIS 

A. Ray Tracing 

Ray tracing is a computer graphics method to render or 

visualize objects from the scene to the screen. As opposed to the 

standard rasterization method, ray tracing works by sending rays 

per pixel and trace it to the scene until it hit an object in the 

scene. 
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Ray tracing is the basis of many other advanced techniques 

such as ray casting, photon mapping, and path tracing. These 

techniques are often used in the context of photorealistic or 

physically based rendering. However, this does not mean that 

ray-tracing-based techniques are only used for such matters. It 

is certainly possible to use ray tracing for non-physical based 

rendering effects. 

Ray tracing can simulate a variety of optical effects, such as 

reflection, refraction, soft shadows, scattering, depth of field, 

motion blur, caustics, ambient occlusion and dispersion 

phenomena (such as chromatic aberration). It can also be used 

to trace the path of sound waves in a similar fashion to light 

waves, making it a viable option for more immersive sound 

design in video games by rendering realistic reverberation and 

echoes. In fact, any physical wave or particle phenomenon with 

approximately linear motion can be simulated with ray tracing. 

Ray tracing-based rendering techniques that involve sampling 

light over a domain generate image noise artifacts that can be 

addressed by tracing a very large number of rays, using 

denoising techniques, or spread the ray over time. 

Formally, we can model the ray as: 

 

 𝑃(𝑡) = 𝑂⃗ + 𝑡𝐷̂ (1) 

Where:  

𝑂⃗ : Ray origin point  

𝐷̂: Ray normalized direction from 𝐴 to 𝐵   

𝑡: Ray Euclidean distance  

 

This equation is commonly referred to as the parametric ray 

equation (or parametric line equation). We must solve for the 

Euclidean distance t to “trace” or move the ray starting from the 

viewport (the observer) to the object in the scene. The method 

to solve this is to use ray-object intersection test for each object 

in the scene. Note that a ray can intersect with more than one 

object if the objects are stacked relative to the observer. To work 

around that, we need to store the distance of each intersection 

and keep the minimum distance. The intersection with the 

minimum distance is the closest one to the observer, which 

makes sense because objects with larger distance would be 

blocked by the closest object from the observer. 

 

B. Acceleration Structure 

Acceleration structures as the name implies are spatial data 

structures that speed up ray traversal, specifically, the part of ray 

traversal where we need to find the object to intersect. 

There are basically two distinct “class” of spatial partitioning 

acceleration structure schemes. One is space subdivision 

methods such as BSP (Binary Space Partitioning), k-

dimensional tree (kD-Tree), and octree. The other one is 

considered as object subdivision methods, such as Bounding 

Volume Hierarchy (BVH) tree. 

Each method has its own advantages and disadvantages. In the 

case of space subdivision methods, since the subspaces do not 

overlap, it is usually possible to traverse the structure in front-

to-back, or back-to-front, order more easily. When a ray is 

traversing such structure, as soon as it hits a surface, we can stop 

the traversal. This usually leads to faster traversal schemes. 

Several software renderers take advantage of the traversal 

efficiency given by the space subdivision schemes. On the other 

hand, space subdivision schemes may be more intricate to 

implement and may lead to deeper trees. Also, they do not like 

very much dynamic geometry [3]. If the geometry encoded into 

a space subdivision acceleration structure change, we usually 

must rebuild the acceleration structure from scratch. 

 

 

 

Fig. 3. Illustration of BVH acceleration structure. 

(Source: https://en.wikipedia.org/wiki/Bounding_volume_hierarchy) 

 

Object subdivision methods have a different characteristic. 

Since the object is subdivided with volumes, and these volumes 

may overlap, the traversal is traditionally slower. We cannot, for 

instance, stop traversing a BVH as soon as a ray finds an 

intersection with a surface. Since the volumes overlap, we may 

need to check for potential intersections with nearby primitives 

before quitting the traversal. On the other hand, it may be easier 

to implement a BVH because we do not have to split the object 

parts with planes. Also, BVHs usually generate shallower 

structures (which may eventually compensate for the slower 

traversal). However, one of the most interesting aspects of the 

BVHs is that they are dynamic geometry friendly. If geometry 

changes (but not much, actually), we can simply locally adjust 

the size and position of the corresponding bounding volume (by 

refitting). These adjustments may cause the need to adjust the 

parent volumes, a procedure that may culminate in a chain 

Fig. 2. Illustration of how rays are sent to the scene. 

(Source: https://en.wikipedia.org/wiki/Ray_tracing_(graphics)) 
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reaction that may reach the root node of the BVH. 

When choosing between the two different methods, such as 

octree and BVH, pick the one that suits the most. Octree is 

superior when the scene is dense and can be represented as a 

uniform voxel1 grid. Because the space are divided into regular 

grids, some traversal methods like DDA-tracing can be used to 

improve ray tracing or marching performance. However, if the 

grid is sparse, BVH might be faster, though another method like 

SVO (Sparse Voxel Octree) exists. BVH on the other hand is 

superior if the scene consists of various sizes of geometry. 

Typically, it’s the small geometries that are hard to represent 

with voxels. 

 

C. Graph 

A graph is a structure in discrete mathematics, particularly in 

graph theory, which consists of set of objects that are related to 

each other in a sense. These objects are called nodes or vertices 

or points, whereas the line that represents the relation between 

the nodes are called edges. Also, another part of graph that is not 

commonly used are faces, which represents the areas that are 

enclosed between the edges. Note that the area “outside” the 

graph is also considered as a face. In mathematical notation, we 

can say that graph G is defined as G = (V, E), where V are the 

vertex set, and E is the edge set. Generally, the vertex count 

should be above 0. This means that a collection of vertices 

without edges is also considered as a graph (usually called as 

null graph or empty graph). 

There are various types of graphs in graph theory, but some of 

the common ones are: 

1) Simple Graph 

A regular graph or a simple graph is a graph that does 

not consist of ring nor doubly linked vertices. 

2) Multi Graph 

A multi graph is the opposite of simple graph. This 

graph has a doubly linked vertex in it. 

3) Directed Graph (Digraph) 

A directed graph is a graph with direction set for its 

edges. This means that a connection from vertices V1 to V2 

does not mean the same vice versa. We can say that other 

graphs that does not have orientation on their edges are 

called undirected graphs. 

4) Null Graph or Empty Graph 

As stated before, a graph with only vertices and no 

edges are called a null graph or an empty graph. 

Graph can also contain a path and/or a circuit [1]. A path is a 

sequence of edges which joins vertices. A directed graph 

contains a special type of path called directed path (or dipath). 

A circuit is type of path where the start and end of the path is the 

same. 

 
1 Volume pixel, a three-dimensional version of pixel. 

 

Fig. 4. Example of various graph structures. 

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/21-Graf-Bagian2-2024.pdf) 

 

D. Tree 

Tree is an undirected graph that is connected and does not have 

a circuit [2]. Formally, let graph G = (V, E) be an undirected 

simple graph with n vertices, then all these properties are 

equivalent: 

 

1. G is a tree, 

2. Every pair of vertices in G is connected with only a single 

path, 

3. G contains m = n – 1 total number of edges, 

4. G does not have a circuit, 

5. G is a connected graph, 

6. G does not have a circuit, and an additional edge will only 

result in one circuit, 

7. G is a connected graph, and all the edges are “bridges”. 

 

In computer graphics (and informatics in general), a tree is 

usually a rooted tree. A rooted tree is a tree with one of the 

vertices considered as the root and its edges are given an 

orientation or direction. 

 

 

Fig. 5. Example of various tree structures. 

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/23-Pohon-Bag1-2024.pdf) 

 

A rooted tree has its own terminologies that are commonly 

referred to, such as: 

1) Children and parents 

Given vertex V1, V2, and V3 with edges coming from V1 

to V2 and V3, then V1 is the parent of V2 and V3, while V2 

and V3 are the children of V1.  

2) Siblings 

Given children V2 and V3 from parent V1, then we can 

say V2, and V3 are siblings. Children from different 

parents are not siblings. 

3) Subtree 
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A subtree is a tree within a tree. The largest subtree 

would be the trees where the root is the direct child of the 

original tree. 

4) Degree 

The degree of a vertex is the number of subgraphs of 

that vertex. The degree of a tree is usually the degree of 

the root. 

5) Leaf 

A leaf is a vertex of a tree with no children. The degree 

of a leaf is zero because it does not contain a subtree. 

6) Internal node 

An internal node is a vertex of a tree with children 

except for the root, hence the name internal node. 

7) Level  

The level or depth of a vertex is the length of the path 

taken from the root to said vertex. This means that the root 

has depth of zero. 

Given tree T with the degree of the root n, we can say that T is 

an n-ary tree. In computer graphics, binary (n = 2) tree is one the 

most used tree. With each vertices containing only a maximum 

of two children, we can say that a vertex in binary tree only has 

left and right children. Because the order of the children matters, 

a binary tree is considered an ordered tree. 

 

 

Fig. 7. Example of binary tree. 

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/24-Pohon-Bag2-2024.pdf) 

 

E. Bounding Volume Hierarchy Tree 

BVH is binary tree structure on a set of geometric objects. 

These geometric objects are in the form of leaf nodes of the tree, 

which are wrapped in bounding volumes. In computer graphics, 

a bounding volume for a set of objects is a closed region that 

completely encloses the union of the objects in the set. These 

wrapped leaf nodes are also wrapped in another, larger, 

bounding volumes. So, the resulting BVH tree is a single 

bounding volume that contains another bounding volume 

recursively. 

The way BVH groups object in the scene is by splitting the 

object by the BVH axis relative to the world. This grouping is 

done recursively until ideally the smallest bounding box is only 

covering a single object. To construct the BVH, there are three 

primary methods: 

 

 

1) Top-down method 

In top-down method, the input object set is divided into 

two or more subsets which then bound in the selected 

bounding volume and continue dividing (and bounding) 

recursively until each subset contains only one primitive 

(leaf nodes are reached). Top-down approaches are by far 

the most common, simple to use, and quick to build, but 

they don't always provide the greatest trees. 

2) Top-down method 

Starting with the input set as the tree's leaves, bottom-

up methods group two or more of them to create a new 

(internal) node. This process is repeated until all the input 

is gathered under a single node, that is, the tree's root. 

Although it is more challenging to execute, bottom-up 

approaches are probably going to result in better trees 

overall. According to several recent studies [3], sorting 

items using a space-filling curve and applying 

approximate clustering based on this sequential order can 

significantly increase construction speed in low-

dimensional space, matching or surpassing top-down 

approaches. 

3) Insertion method 

Insertion methods build the tree by inserting one object 

at a time, starting from an empty tree. The insertion 

location should be chosen that causes the tree to grow as 

little as possible. Insertion methods are considered on-line 

methods since they do not require all primitives to be 

available before construction starts and thus allow updates 

to be performed at runtime. 

 

III.   IMPLEMENTATION 

For the sake of simplicity, we will use and analyse an already 

made ray tracer with BVH built in it. This ray tracer is made by 

boonemiller and is publicly available on their GitHub. This ray 

tracer is made in C++ language. 

 

A. The BVH Structure 

The structure of the BVH tree’s vertex is implemented in the file 

bvh.hpp 

Fig. 6. How BVH groups objects. 

(Source: https://github.com/boonemiller/Ray-Tracer) 
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Fig. 8. BVH vertex structure. 

(Source: https://github.com/boonemiller/Ray-Tracer) 

 

Since BVH is a binary tree, each vertex hold references to the 

left and right children. To hold the bounding volume data for the 

inner vertices, it stores the minimum and maximum 3-dimension 

position of the bounding volume.   

 

B. The BVH Construction 

The BVH construction is inside the file bvh.cpp within the 

function constructTree. Let us break down the main 

algorithm inside this recursive function. 

 

1) Base Case 

The base case of this function is when the object that is 

enclosed by the bounding volume is less than 3. In another 

word, when a node only has less than or equal to 3 objects, 

it will activate the base case. The node will then become 

a leaf node that stores direct reference to the objects. 

 

Fig. 9. BVH construction base case. 

(Source: https://github.com/boonemiller/Ray-Tracer) 

 

2) Axis Splitting 

We know that BVH works by grouping set of objects 

into two subsets by splitting based on the axis. The code 

splits objects into two groups based on their position 

along the "longest axis" of the current node. Objects are 

also sorted into left/right groups based on whether they're 

below or above the midpoint. For each group/vertex, it 

calculates: 

• The bounding box (min/max coordinates in x, y, z), 

• The centroid (average position) of objects in that 

group, 

• The new longest axis for that group's vertex. 

3) Axis Selection 

After creating new left and right children, we also want 

to set their longest axis and centroid. This code determines 

the longest axis by comparing the extent of the bounding 

box in each dimension. This helps create more efficient 

splits. 
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Fig. 10. BVH axis splitting. 

(Source: https://github.com/boonemiller/Ray-Tracer) 

 

4) Recursion 

After processing the current vertex, the function 

recursively builds subtrees for the left and right groups. 

 

Fig. 11. Recursion in BVH construction. 

(Source: https://github.com/boonemiller/Ray-Tracer) 

 

C. The BVH Traversal 

To traverse the BVH structure, each ray must start from the 

root, and recursively find the subtree that collides with the 

object inside the bounding volume. This means that in each 

iteration, a ray-bounding-volume intersection test must be 

done. 

Because the traversal in done in a recursive manner, then a 

base case must be set up. The base case for this traversal is 

when the current node is a leaf node, which means that there 

are no deeper or smaller bounding volumes. The ray will either 

hit or miss the scene based on this intersection test.  

This also shows how BVH traversal can speed up a regular 

ray tracing. If the ray happens to intersect with a leaf node 

early, then an early return is done. Compared to regular ray 

tracing, this is surely a huge speed up than intersecting the 

whole object in the scene. The only way a BVH can be slower 

than regular ray traversal is if the BVH construction 

performance overhead is worse than ray tracing the whole 

scene. 

 

 

Fig. 12. Function to traverse BVH structure. 

(Source: https://github.com/boonemiller/Ray-Tracer) 

 

IV.   RESULT 

Boonemiller states that BVH trees increases cache 

performance of primary rays. This happens as a side effect of 

casting rays in one area consecutively. For example, if a primary 

ray is cast in one pixel, and then cast a primary ray in the pixel 

next to it, it is likely that the two pixels will be accessing the 

same parts of the BVH tree and as a result the objects needed for 

the object intersection tests will likely already be in the cache. 

The graph shows the speed ups achieved by adding a BVH 

acceleration structure into the ray tracing code. This shows the 

percentage speed up of using a BVH acceleration structure over 

a naïve, no acceleration structure method of ray tracing, on a 

variety of scenes. 

 

 

Fig. 13. Performance graph of BVH. 

(Source: https://github.com/boonemiller/Ray-Tracer) 

 

V.   CONCLUSION 

We have covered BVH construction technique. which 

balance the trade-off between preprocessing time and runtime 

efficiency. We also examined traversal algorithms that exploit 

BVH’s hierarchical nature for early termination, further 
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optimizing intersection tests. Experimental results demonstrated 

substantial performance improvements in terms of rendering 

speed, reduced intersection computations, and memory usage 

when compared to the regular naive methods. 

Despite its strengths, BVH construction remains 

computationally expensive, particularly for dynamic or 

deformable scenes requiring frequent updates. Future work can 

address these limitations by incorporating parallel processing 

techniques, GPU acceleration, and hybrid approaches that 

combine BVH with other spatial partitioning methods. 

Additionally, adapting BVH to dynamic environments through 

incremental updates rather than full rebuilding offers an avenue 

for further optimization. 

In conclusion, BVH proves to be a scalable and practical 

solution for accelerating ray tracing computations, making it 

highly suitable for modern graphics applications requiring real-

time performance. This work not only highlights BVH’s 

capabilities but also lays the groundwork for future innovations 

in rendering technologies. 

 

VI.   APPENDIX 

The source code for the BVH and ray tracer for this paper is 

made by boonemiller, which is available at their GitHub here: 

https://github.com/boonemiller/Ray-Tracer 
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